Quantcast
Viewing all articles
Browse latest Browse all 81

The Antarctic Half of the Global Thermohaline Circulation Is Faltering

Image may be NSFW.
Clik here to view.
Anvers Island, Antarctica moon rise over sea ice
The sudden cooling of Europe, triggered by collapse of the global thermohaline circulation in the north Atlantic and the slowing of the Gulf Stream has been popularized by the movies and the media. The southern half of the global thermohaline circulation is as important to global climate but has not been popularized. The global oceans' coldest water, Antarctic bottom water forms in several key spots around Antarctica. The water is so cold and dense that it spreads out along the bottom all of the major ocean basins except the north Atlantic and Arctic. Multiple recent reports provide strong evidence that the formation of Antarctic bottom water has slowed dramatically in response to massive subsurface melting of ice shelves and glaciers. The meltwater is freshening a layer of water found between depths of 50 and 150 meters. This lightened layer is impeding the formation of Antarctic bottom water, causing the Antarctic half of the global thermohaline circulation to falter.

Update from the comments

I have been asked what's going to happen in response to the faltering of the thermohaline circulation around Antarctica. This post is based on a synthesis of very recent research reports. The key report, that found the layer of fresh water between 50 and 150 meters deep, was just published. Deward Hastings explained, in a comment, how disruptive this lens of freshened water could be to the earth's climate system and our models of it:

it IS complicated, and confusing

That lens of (relatively) fresh water that is forming around Antarctica is challenging, and changing, almost everything in global circulation patterns.  It freezes sooner (and at a higher temperature).  That shields the water from the wind, and reduces wind-driven mixing.  It reduces, perhaps to the point of stopping altogether, the present global ocean circulation patterns.  That in turn will change global atmospheric weather.

Nobody knows exactly what comes next.  We've never seen it happen, and our models, not terribly accurate in describing the world we know, are completely untested in the coming world that we don't know.

Without a constant flow of cold water from the poles the Abyss will warm . . . and without cold slowly rising from the Abyss the mid-ocean and ocean surface will warm (already happening).  That will lead to more evaporation (driving a different haline circulation in the tropics) and stronger tropical winds driving different surface currents and greater mixing.

Pretty much everything changes as a result . . . pretty much everywhere.  After it's all over some places will have it better and some worse.  While it's changing everywhere will be worse, because there is no way to know what to expect (except that it won't be what you've prepared for).

The best guesses we can make now about the effects of this melt layer are based on paleoclimatology research. Possible effects, based on paleoclimatology studies, are presented in the last few paragraphs. The results of these new studies will be challenging climate modelers for many years.

Viewing all articles
Browse latest Browse all 81

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>